VISUALIZING
Human Biology
Lab Manual

JENNIFER ELLIE
EXECUTIVE VP AND PUBLISHER Kaye Pace
SENIOR ACQUISITIONS EDITOR Rachel Falk
MARKETING MANAGER Kristine Ruff
PRODUCTION MANAGER Micheline Frederick
ASSISTANT EDITOR Jenna Paleski
PHOTO MANAGER Hilary Newman
PHOTO RESEARCHER Terri Stratford
SENIOR ILLUSTRATIONS EDITOR Sandra Rigby
CREATIVE DIRECTOR Harry Newman
DESIGNER Wendy Lai
SENIOR MEDIA EDITOR Linda Muriello
INTERACTIVE PROJECT MANAGER Daniela DiMaggio
EDITORIAL ASSISTANT Jennifer Dearden
ART DEVELOPER Elizabeth Morales
PRODUCTION SERVICES Furino Production
Cover PHOTOS (Center) © Stockbyte/GettyImages; (bottom) Fawn V. Beckman

This book was set in Adobe Caslon by Silver Editions and printed and bound by R.R. Donnelley.
The cover was printed by R.R. Donnelley.

This book is printed on acid-free paper.

The case stories that appear in this text are fictitious and not based on any specific real people or situations. The photographs used to illustrate the case stories do not depict the individuals described.

Copyright © 2011, 1999, 1995 John Wiley & Sons, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, website www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, (201) 748-6011, fax (201) 748-6008, website www.wiley.com/go/permissions.

Evaluation copies are provided to qualified academics and professionals for review purposes only, for use in their courses during the next academic year. These copies are licensed and may not be sold or transferred to a third party. Upon completion of the review period, please return the evaluation copy to Wiley. Return instructions and a free of charge return shipping label are available at www.wiley.com/go/returnlabel. Outside of the United States, please contact your local representative.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1
Visualizing Human Biology Lab Manual engages students by focusing on the structure and function of each person’s own unique body. Step-by-step visual guides are provided so that students can successfully complete each experiment in a timely manner. Visuals are used to teach and explain, not just illustrate, and readers with varied learning styles will be engaged. The applications of common laboratory techniques in science, medicine, and everyday life are also explored in each lab topic.

Visualizing Human Biology Lab Manual:

• Uses the unique Visualizing the Lab feature to provide Step by Step instructions and photos to help students successfully complete each lab
• Includes a comprehensive Preparation Guide with teaching tips, supply lists, supplier listings, and instructor support on the Instructor Companion site (www.wiley.com/college/ellie)
• Encourages students to grasp the big picture by relating each lab activity to real life conditions and their own connections to Biology
• Provides increased opportunities for critical thinking through the Active Learning Questions, Introductions, Exercises and Review Questions included in each of the 18 labs
• Can be used with any Human Biology text, but mirrors the table of contents of Visualizing Human Biology and key visuals from the text are used where appropriate
• Closer Look At boxes delve into the practical applications of the experiments performed in lab
• Gross anatomy activities include color photographs of anatomical models, in addition to color photographs of human organs for the accompanying review questions
• Case studies on disorders are provided in each organ system lab
• Histology activities include color photomicrographs to help students identify key structures
• URLs are provided within each lab to reliable sources of health information on the Internet

INTRODUCTION

This lab manual is devoted to the diverse population of students who are taking introductory courses on human biology. For some students, this course will serve as their only exposure to the natural sciences at a higher learning institution. For others, this course will serve as a stepping stone into the health professions or the natural sciences. As educators, we strive to meet the needs of our diverse student populations, particularly when students with varying career goals enroll in the same course. To meet the needs of diverse student populations, core biological concepts are addressed from the following perspectives:
• The perspective of a well-rounded citizen who understands the practical applications of controlled research studies and common laboratory techniques in the biological sciences.

• The perspective of a student who is learning basic medical terminology, as well as the principles behind common diagnostic exams.

• The perspective of a burgeoning health profession major who is getting ready to embark on rigorous coursework in his or her area of specialty.

Throughout the manual, students are exposed to the practical applications of the activities they perform during lab. As a result, students can easily relate the importance of key topics to their own lives, regardless of differences in chosen majors and career paths.

For more information, visit: www.wiley.com/college/ellie

Visualizing Human Biology Lab Manual is available as a standalone or in a customizable package with Visualizing Human Biology and your own materials, through the Wiley Custom Select Program (www.customselect.wiley.com). Please contact your Wiley representative for more information.

Reviewers of Visualizing Human Biology

Shazia Ahmed, Texas Woman’s University
Dorothy Anthony, Keystone College
Chantilly Apollon, City College of San Francisco
David Bailey, St. Norbert College
Tamatha Barbeau, Francis Marion University
Laurie J. Bonneau, Trinity College
Jennifer R. Chase, Northwest Nazarene University
Marie Cook, Georgian Court University
Tracy Deem, Bridgewater College
Deborah Dodson, Vincennes University
Kari-Ann Draker, Sir Sanford Fleming College
Steven D. Fenster, Ashland University
Donald Glassman, Des Moines Area Community College
Leif Hembre, Hamline University
Linda Jensen-Carey, Southwestern Michigan College
Brad Kennedy, Iowa Western Community College
Debra Levinthal, Roosevelt University
Amy Liptak, NHTI – Concord’s Community College

Mary Katherine Lockwood, University of New Hampshire
Philip J. McCrea, McHenry County College
Susan Meacham, University of Nevada, Las Vegas
Rachel J. Meyer, Midland Lutheran College
Nibedita Mitra, University of Hartford
Peter Mullen, Florida Community College
Kelly Neary, Mission College
Linda Peters, Holyoke Community College
Jean Revie, South Mountain Community College
Steven Revie, South Mountain Community College
Lori Ann Rose, Sam Houston State University
Stacy Seeley, Kettering University
Joshua Smith, Missouri State University
Leah Stands Lanier, Virginia Military Institute
Rick Stewart, Fresno City College
Robert Turnbull, University of Southern Mississippi
Stacy Vaughn, Des Moines Area Community College

Acknowledgments

First and foremost, I extend my heartfelt gratitude to the editorial and production team at John Wiley and Sons. It is with their vision, expertise, and tireless efforts that this book reached its full potential on a tight schedule. In particular, I would like to thank Rachel Falk and Jenna Paleski for their passion and dedication to the book, their innovative ideas,
and – most importantly – their patience in answering a myriad of questions from the novice author! I sincerely thank Hilary Newman, in addition to Teri Stratford, for researching and managing the staggering number of photos in this lab manual. Sandra Rigby provided invaluable expertise while overseeing the illustration program, and I am grateful for her efforts. I am also grateful to our production manager, Jeannine Furino, for her tireless efforts in putting all of the pieces of the puzzle together. Special thanks are also extended to the following individuals at John Wiley and Sons: Kaye Pace, Kristine Ruff, Micheline Frederick, Harry Nolan, Wendy Lai, Linda Muriello, Daniela DiMaggio, and Jennifer Dearden.

I am extremely grateful to my colleagues at Wichita State University for their support and guidance throughout this journey. First and foremost, my gratitude goes to Fawn Beckman for her passion and dedication to the lab manual. Although she worked behind the scenes – optimizing experiments, overseeing the step-by-step photos, and even compiling the preparation guide – I could not have written this book without her. I thank the following individuals for their willingness to model in the step-by-step vignettes: Carrie Chambers, Derek Norrick, Matt Moore, Megan Simpson, Brian Kilmer, Pravin Wagley, Katie Coykendall, Bryauna Carr, Barbara Fowler, and Lindsey Drees. I sincerely thank my supervisor and departmental chair, Dr. William H. Hendry III, for supporting my decision to embark on this exciting project. Mary Jane Keith lent her expertise in anatomy to me on countless occasions, and Maria Martino provided professional and personal support throughout this entire journey. I thank Dr. Kent R. Thomas for his assistance on multiple labs, and in particular, for suggesting the sperm motility experiment. Dr. Karen Brown-Sullivan provided guidance on the evolution lab, as did Dr. Jessica Bowser on the cancer lab and Isabel Hendry on the DNA fingerprinting lab.

I extend my heartfelt gratitude to Ellie Skokan, MA for piquing my interest in biology as an undergraduate. The same is true for my graduate mentor, Dr. J. David McDonald, who nurtured my interest in molecular biology. On a final note, I would like to thank my brother, Michael McCoy, for his love and support.

Dedication

This book is dedicated to my students – past, present, and future – who make the time we spend together in the classroom such a valuable, interactive experience. You remind me how challenging it can be to learn the biological concepts for the first time, and you allow me to grow as an instructor as I strive to help you grow academically.

About the Author

Jennifer Ellie was born and raised in Wichita, Kansas, where she happily lives and works to this day. She obtained her BS in Biological Sciences from Wichita State University with an emphasis in Biochemistry. Following several years of work as a laboratory technician, Jennifer decided to pursue an MS in Biological Sciences. As a graduate teaching assistant, she quickly realized that her passion lies in the area of science education. Currently, she coordinates laboratory courses for the biology department at Wichita State University, where she also instructs Human Biology courses.
BRIEF TABLE OF CONTENTS

Lab 1 Using the Scientific Method in Everyday Life 1-1
Lab 2 Observing Cells with Light Microscopy 2-1
Lab 3 Observing Body Tissues 3-1
Lab 4 The Chemistry of Life 4-1
Lab 5 The Digestive System 5-1
Lab 6 The Cardiovascular System 6-1
Lab 7 The Respiratory System 7-1
Lab 8 The Urinary System 8-1
Lab 9 The Reproductive System 9-1
Lab 10 The Nervous System 10-1
Lab 11 The Special Senses 11-1
Lab 12 The Skeletal System 12-1
Lab 13 The Muscular System 13-1
Lab 14 Human Genetics 14-1
Lab 15 DNA Fingerprinting 15-1
Lab 16 Cancer 16-1
Lab 17 Microorganisms and the Human Body 17-1
Lab 18 Evolution 18-1

Line Art and Text Credits L-1
Photo Credits P-1
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Lab 1</th>
<th>Using the Scientific Method in Everyday Life</th>
<th>1-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercise 1.1</td>
<td>Testing the Chemical Content of Different Water Samples</td>
<td>1-4</td>
</tr>
<tr>
<td>Exercise 1.2</td>
<td>Comparing the Taste and Smell of Different Water Samples</td>
<td>1-6</td>
</tr>
<tr>
<td>Visualizing the Lab Step by Step 1.3</td>
<td>Testing the Effectiveness of Hand Washing</td>
<td>1-9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab 2</th>
<th>Observing Cells with Light Microscopy</th>
<th>2-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visualizing the Lab Step by Step 2.1</td>
<td>Observing Skin with Light Microscopy</td>
<td>2-8</td>
</tr>
<tr>
<td>Visualizing the Lab Step by Step 2.2</td>
<td>Observing Hair with Light Microscopy</td>
<td>2-12</td>
</tr>
<tr>
<td>Visualizing the Lab Step by Step 2.3</td>
<td>Observing Cheek Cells through a Compound Microscope</td>
<td>2-15</td>
</tr>
<tr>
<td>Exercise 2.4</td>
<td>Observing Prepared Tissue Slides</td>
<td>2-18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab 3</th>
<th>Observing Body Tissues</th>
<th>3-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercise 3.1</td>
<td>Identifying Epithelial Tissue on Microscope Slides</td>
<td>3-4</td>
</tr>
<tr>
<td>Exercise 3.2</td>
<td>Identifying Muscle Tissue on Microscope Slides</td>
<td>3-8</td>
</tr>
<tr>
<td>Exercise 3.3</td>
<td>Identifying Nervous Tissue on Microscope Slides</td>
<td>3-11</td>
</tr>
<tr>
<td>Exercise 3.4</td>
<td>Identifying Connective Tissue on Microscope Slides</td>
<td>3-12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab 4</th>
<th>The Chemistry of Life</th>
<th>4-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercise 4.1</td>
<td>Testing for Reducing Sugars with Benedict’s Reagent</td>
<td>4-5</td>
</tr>
<tr>
<td>Exercise 4.2</td>
<td>Testing for Starch with Iodine Reagent</td>
<td>4-7</td>
</tr>
<tr>
<td>Exercise 4.3</td>
<td>Testing for Proteins with Biuret Reagent</td>
<td>4-8</td>
</tr>
<tr>
<td>Exercise 4.4</td>
<td>Testing for Lipids with the Sudan IV Test</td>
<td>4-9</td>
</tr>
<tr>
<td>Exercise 4.5</td>
<td>Testing for DNA with the Dische Diphenylamine Test</td>
<td>4-11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab 5</th>
<th>The Digestive System</th>
<th>5-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercise 5.1</td>
<td>Gross Anatomy of the Digestive System</td>
<td>5-2</td>
</tr>
<tr>
<td>Visualizing the Lab Step by Step 5.2</td>
<td>Determining the Specificity of Lactase</td>
<td>5-7</td>
</tr>
<tr>
<td>Exercise 5.3</td>
<td>Effects of pH on Trypsin Activity</td>
<td>5-10</td>
</tr>
<tr>
<td>Exercise 5.4</td>
<td>Effects of Temperature on Amylase Activity</td>
<td>5-13</td>
</tr>
<tr>
<td>Exercise 5.5</td>
<td>Effects of Bile on Lipase Activity</td>
<td>5-15</td>
</tr>
<tr>
<td>Exercise 5.6</td>
<td>Disorders of the Digestive System</td>
<td>5-18</td>
</tr>
</tbody>
</table>

Table of Contents ix
Lab 6
The Cardiovascular System 6-1
Exercise 6.1 Characteristic of a Normal Blood Smear 6-3
Exercise 6.2 Blood Disorders 6-3
Exercise 6.3 Gross Anatomy of the Heart 6-9
- **Visualizing the Lab Step by Step 6.4** Listening to Your Heartbeat 6-12
Exercise 6.5 Determining Pulse Rate 6-15
Exercise 6.6 Tracing Blood Flow through the Cardiovascular System 6-19
Exercise 6.7 Identifying Arteries and Veins on a Microscope Slide 6-22
- **Visualizing the Lab Step by Step 6.8** Determining Your Blood Pressure 6-25
Exercise 6.9 Disorders of the Cardiovascular System 6-27

Lab 7
The Respiratory System 7-1
Exercise 7.1 Gross Anatomy of the Respiratory System 7-2
Exercise 7.2 Histology of the Respiratory System 7-7
- **Visualizing the Lab Step by Step 7.3** Listening to Lung Sounds 7-9
- **Visualizing the Lab Step by Step 7.4** Visualizing the Effects of Dissolved Carbon Dioxide on pH 7-11
Exercise 7.5 Measuring Respiratory Volumes with Spirometry 7-16
Exercise 7.6 Disorders of the Respiratory System 7-17

Lab 8
The Urinary System 8-1
Exercise 8.1 Gross Anatomy of the Urinary System 8-3
- **Visualizing the Lab Step by Step 8.2** Filtering Blood through a Semipermeable Membrane 8-8
Exercise 8.3 Histology of the Urinary System 8-14
- **Visualizing the Lab Step by Step 8.4** Urinalysis 8-17
 - **Visualizing the Lab Step by Step 8.4A** Performing Urinalysis on Your Own Urine Sample 8-17
 - **Visualizing the Lab Step by Step 8.4B** Performing Urinalysis on Simulated Urine Sample 8-19
Exercise 8.5 Urological Disorders 8-21

x Table of Contents
<table>
<thead>
<tr>
<th>Lab 9</th>
<th>The Reproductive System</th>
<th>9-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercise 9.1</td>
<td>Gross Anatomy of the Reproductive System</td>
<td>9-4</td>
</tr>
<tr>
<td>Exercise 9.2</td>
<td>Histology of the Reproductive System</td>
<td>9-11</td>
</tr>
<tr>
<td>Visualizing the Lab Step by Step 9.3</td>
<td>Observing Sperm Motility</td>
<td>9-17</td>
</tr>
<tr>
<td>Exercise 9.4</td>
<td>Sexually Transmitted Diseases</td>
<td>9-24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab 10</th>
<th>The Nervous System</th>
<th>10-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercise 10.1</td>
<td>Histology of Nervous Tissue</td>
<td>10-4</td>
</tr>
<tr>
<td>Visualizing the Lab Step by Step 10.2</td>
<td>Nerve Conduction in the Human Body</td>
<td>10-5</td>
</tr>
<tr>
<td>Exercise 10.3</td>
<td>Gross Anatomy of the Nervous System</td>
<td>10-12</td>
</tr>
<tr>
<td>Visualizing the Lab Step by Step 10.4</td>
<td>Effects of Caffeine on the Human Body</td>
<td>10-18</td>
</tr>
<tr>
<td>Visualizing the Lab Step by Step 10.5</td>
<td>Testing Your Reflexes</td>
<td>10-24</td>
</tr>
<tr>
<td>Exercise 10.6</td>
<td>Disorders of the Nervous System</td>
<td>10-27</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab 11</th>
<th>The Special Senses</th>
<th>11-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercise 11.1</td>
<td>Testing the Relationship between Taste and Smell</td>
<td>11-3</td>
</tr>
<tr>
<td>Exercise 11.2</td>
<td>The Two-Point Discrimination Test</td>
<td>11-6</td>
</tr>
<tr>
<td>Exercise 11.3</td>
<td>Ear Anatomy</td>
<td>11-11</td>
</tr>
<tr>
<td>Visualizing the Lab Step by Step 11.4</td>
<td>Examining the Ears with an Otoscope</td>
<td>11-13</td>
</tr>
<tr>
<td>Exercise 11.5</td>
<td>Sound Localization</td>
<td>11-18</td>
</tr>
<tr>
<td>Exercise 11.6</td>
<td>Eye Anatomy</td>
<td>11-23</td>
</tr>
<tr>
<td>Visualizing the Lab Step by Step 11.7</td>
<td>Examining the Eyes with an Ophthalmoscope</td>
<td>11-25</td>
</tr>
<tr>
<td>Visualizing the Lab Step by Step 11.8</td>
<td>Near-Point Accommodation Test</td>
<td>11-28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab 12</th>
<th>The Skeletal System</th>
<th>12-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercise 12.1</td>
<td>Histology of Skeletal Tissues</td>
<td>12-4</td>
</tr>
<tr>
<td>Visualizing the Lab Step by Step 12.2</td>
<td>Testing the Effects of Chemicals on Bone Strength</td>
<td>12-11</td>
</tr>
<tr>
<td>Exercise 12.3</td>
<td>Gross Anatomy of the Axial Skeleton</td>
<td>12-19</td>
</tr>
<tr>
<td>Exercise 12.3A</td>
<td>Identifying Bones in the Skull</td>
<td>12-20</td>
</tr>
<tr>
<td>Exercise 12.3B</td>
<td>Identifying Vertebrae</td>
<td>12-22</td>
</tr>
<tr>
<td>Exercise 12.3C</td>
<td>Identifying Bones in the Ribcage</td>
<td>12-23</td>
</tr>
</tbody>
</table>
Table of Contents

Exercise 12.4
Gross Anatomy of the Appendicular Skeleton 12-26

Exercise 12.4A
Identifying Bones in the Pectoral Girdles and Upper Limbs 12-28

Exercise 12.4B
Identifying Bones in the Pelvic Girdle and Lower Limbs 12-30

Exercise 12.5
Identifying Bone Fractures on X-Rays 12-36

Lab 13
The Muscular System 13-1

- Exercise 13.1
 Histology of Skeletal Muscles 13-4

- Visualizing the Lab Step by Step 13.2
 Observing Muscle Contraction 13-8

- Exercise 13.3
 Gross Anatomy of the Muscular System 13-20

- Exercise 13.4
 Disorders of the Muscular System 13-26

Lab 14
Human Genetics 14-1

- Visualizing the Lab Step by Step 14.1
 Extracting DNA from Cheek Cells 14-3

- Exercise 14.2
 Examining Chromosomes on a Microscope Slide 14-5

- Exercise 14.3
 Examining Traits with Simple Inheritance Patterns 14-7

- Exercise 14.4
 Identifying Different Modes of Inheritance 14-10

- Visualizing the Lab Step by Step 14.5
 Blood Typing 14-12

- Exercise 14.6
 Two Sides of the Story: Living with a Chromosomal Abnormality and Diagnosing a Chromosomal Abnormality 14-18

Lab 15
DNA Fingerprinting 15-1

- Visualizing the Lab Step by Step 15.1
 Pouring an Agarose Gel 15-5

- Visualizing the Lab Step by Step 15.2
 Gel Electrophoresis 15-6

- Visualizing the Lab Step by Step 15.3
 Staining an Agarose Gel 15-10

- Exercise 15.4
 Analyzing DNA Fingerprints 15-12

Lab 16
Cancer 16-1

- Visualizing the Lab Step by Step 16.1
 Performing an Invasion Assay 16-3

- Exercise 16.2
 Evaluating Tissue Biopsies 16-15

- Visualizing the Lab Step by Step 16.3
 Identifying Mutagens with the Ames Test 16-21
Lab 17
Microorganisms and the Human Body 17-1

- **Visualizing the Lab Step by Step 17.1** Detecting Microorganisms in the Environment 17-4
- **Exercise 17.2** Identifying Bacteria in a Blood Smear 17-11
- **Visualizing the Lab Step by Step 17.3** Observing Bacteria in Dental Plaque 17-12
- **Exercise 17.4** Classifying Bacteria Based on Shape, Arrangement, and Gram Stain Results 17-17
- **Visualizing the Lab Step by Step 17.5** Observing Bacteria in Yogurt 17-22
- **Visualizing the Lab Step by Step 17.6** Simulating the Transmission of an Infectious Disease 17-25
- **Exercise 17.7** Interpreting Results from the Kirby-Bauer Test 17-29

Lab 18
Evolution 18-1

- **Exercise 18.1** Comparing Hominid Skeletons 18-4
- **Exercise 18.2** Environmental Adaptations 18-9
- **Visualizing the Lab Step by Step 18.3** Evolution of a Bacterial Population 18-13
- **Exercise 18.4** Comparative Embryology 18-24

Line Art and Text Credits L-1
Photo Credits P-1